BAT extension - определение. Что такое BAT extension
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое BAT extension - определение

FIELD EXTENSION WHOSE GALOIS GROUP IS ABELIAN
Cyclic extension; Abelian extensions; Abelian Extension; Cyclotomic extension; Solvable extension; Cyclic field extension; Abelian field extension; Solvable field extension

Group extension         
  • Figure 1
GROUP FOR WHICH A GIVEN GROUP IS A NORMAL SUBGROUP
Extension problem; Extension (algebra); Split extension; Extension of a group; Central extension (mathematics)
In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence
Extension (metaphysics)         
THE PROPERTY OF STRETCHING OUT OR TAKING UP SPACE
Physical extension
In metaphysics, extension signifies both 'stretching out' (Latin: extensio) as well as later 'taking up space', and most recently, spreading one's internal mental cognition into the external world.
Serotine         
SPECIES OF MAMMAL
Serotine; Serotine Bat; Eptesicus serotinus; Common serotine bat; Silky bat
·noun The European long-eared bat (Vesperugo serotinus).

Википедия

Abelian extension

In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.